Chapter 1

Fermat’s ray optics

1.1 Fermat’s principle

Fermat

Fermat’s principle states that the path
between two points taken by a ray of light
is the one traversed in the extremal time.

This principle accurately describes the
properties of light reflected off mirrors,
refracted through different media, or
transmitted through a medium with a
continuously varying index of refraction.
Fermat’s principle of optimal paths is
complementary to Huygens’ principle of
constructive interference of waves.

According to Huygens, among all possible paths from an object
to an image, the waves corresponding to the extremal (stationary)
paths contribute most to the image because of their constructive in-
terference. Both principles are approximations to more fundamental
physical results derived from Maxwell’s equations.

For us, Fermat’s principle provides an example that will guide us
in recognising the principles of geometric mechanics.

Fermat’s principle defines a ray of light. Announced in 1662,
Fermat’s principle for geometric optics preceded Lagrange by a cen-
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tury and Hamilton by more than 150 years. This chapter shows that
Fermat’s principle naturally introduces Hamilton’s principle, phase
space, symplectic transformations and momentum maps arising from
reduction by symmetry.

Mathematically, Fermat’s principle states that the ray path r(s)
from a point A to a point B in space is an extremal of optical length,
defined by

5/Bn(r(s))ds =0

A
Here n(r) is the index of refraction at the spatial point (r) and

ds? = dr(s) - dr(s)

yields the element of arc length ds along the ray path r(s) through
that point.

cool air

mirage

Figure 1.1: Fermat’s principle states that the ray path from an observer at A
to a point B in space is an extremal of optical length. For example, along a sun-
baked road, the temperature of the air is warmest near the road and decreases
with height, so that the index of refraction, n, increases in the vertical direction.
For an observer at A, the curved path has a smaller optical path than the straight
line. Therefore, he sees not only the direct line-of-sight image of the tree top at
B, but it also appears to him that the tree top has a mirror image at C. If there
is no tree, the observer sees a direct image of the sky and also its mirror image,
thereby giving the impression, perhaps sadly, that he is looking at water.

1.1.1 Eikonal equation

Most optical instruments are designed to possess a line of sight (or
primary direction of propagation of light) called the optical awxis.
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Choosing coordinates so that the z-axis coincides with the optical
~axis expresses the arc-length element ds in terms of the increment
along the optical axis, dz, as

ds = [(dz)?+ (dy)* + (d2)*]"/?
1
= [+ +93Y2dz = =~ dz, (12,10
o
in which the added notation defines & := dx/dz, y := dy/dz and
o —d2 s

Fermat’s principle can be interpreted as a principle of station-
ary action, with z playing the role of time,

ZB
=08 = 5/ ID{(a5, W a0 11 2)) 0o (L112)
ZA
Here, the optical Lagrangian is
G : : 0095, W 7
L(SE,y,:IZ,y,Z) == TL(:B,y,Z)[l + CEQ + y2]1/2 == _(—,yy—> )

with )
ol . =t ik
VLR B A
We may think of (x,y,2) = (q, 2) where q = (x,y) is a vector with
components in the plane perpendicular to the optical axis at displace-

ment z. In this formulation, Fermat’s principle implies the etkonal
1

equation, as follows:

Theorem 1.1.1 Fermat’s principle
zZB
0=d5=0 [ Lia(2). 4(=))dz.
za

for the optical Lagrangian

L(a, &, 2) = n(q, 2)[1 + |2 /2 =: % {Li.3)

'The term eikonal (from the Greek etkova meaning image) was introduced
into optics in [Br1895].
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with . ]
%
e PR SR TUR 1Y (1.1.4)
gt TGk
implies the etkonal equation
d dq on : d d
Tz (n(q, Z>7dz> oq’ ¢ deae ( )

Proof. Consider a family of C2 curves q(z,¢) € R? representing the
possible ray paths from a point A to a point B in space. These paths
satisfy

q(z,0) =q(z), d(za,¢) =q(z4) and q(zB,€) =q(zB),

for a parameter € in some bounded interval. Define the variation
of the optical action (1.1.2) using this parameter as

ssE /zBL(q(z),Q(z))dz

4
de

_0/ L(q(z,¢),4(z,¢))dz . @ 6)

Differentiating with respect to € under the integral sign, denoting
the variational derivative as

oq(z) == —

o qa(z,e), (@)

e=0

and integrating by parts produces the following variation of the op-
tical action,

0i—s — 5/L(q,q,z)dz
OL OB 1
= [ (55 sa+ 55 9a)e:

Eiry / 8_L_ia_L .5 d+ 8_L.5 3
= Tl @ og) G e e
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In the second line, one assumes equality of cross derivatives, q,. =
qe- evaluated at € = 0, and thereby exchanges the order of deriva-

tives; so that
d

The endpoint terms vanish in the ensuing integration by parts, be-
cause 6q(z4) = 0 = dq(zp). That is, the variation in the ray path
must vanish at the prescribed spatial points A and B at z4 and zp
along the optical axis. Since dq is otherwise arbitrary, the principle
of stationary action is equivalent to the following equation, written
in a standard form later made famous by Euler and Lagrange,

0q

— ————=0 (Euler-Lagrange equations). (1.1.8)

After a short algebraic manipulation using the explicit form of the
optical Lagrangian in (1.1.3), the Euler-Lagrange equation (1.1.8) for
the light rays yields the eikonal equation (1.1.5), in which yd/dz =
d/ds relates derivatives along the optical axis to derivatives in the
arc-length parameter. |

Exercise. Check that the eikonal equation (1.1.5) fol-

lows from the Euler-Lagrange equations (1.1.8) with La-

grangian (1.1.3). *
1.1.2 Huygens wave fronts

We may write the three-dimensional version of the Euler-Lagrange
eikonal equation (1.1.5) for the ray path r € R3 as

(dr/ds)
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This is the 3D eikonal equation for the vector function r(s) defin-
ing the ray path.

Exercise. Verify that the three-dimensional Eikonal equa-
tion (1.1.9) follows from Fermat’s principle in the form

0] Sty / Bn(r(s))ds

A

o @hR e , :
= ()./A n(r(s))\/E Zigds (1.1.10)

with ds? = dr(s) - dr(s) for the arclength parameter s.

*

Answer. As in the calculation leading to the Euler-Lagrange equa-
tion in (1.1.8), one finds

0): = 5/ n(r(s)) Vi - tds

1 St e

where one denotes © := dr/ds. The 3D eikonal equation (1.1.9)
emerges, upon choosing the arclength variable ds? = dr - dr, so that
|t| = 1. (This means that d|¢|/ds = 0.) A

Exercise. Verify that the same three-dimensional Eikonal
equation (1.1.9) also follows from Fermat’s principle in

the form
B
1 it
0_5S_5/ ) L, (1111
dT dr

with dr = nds for the arclength parameter s. *
Answer. Denoting r'(7) = dr/dr one computes as in deriving
EEIES).

B
ds | nds on dindse dr
=68 = el RS e i et ) PSR
i /A dT|:d7' Or dS((]T ds)} 2L
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which agrees with the previous calculation upon reparameterising
dif=Inds} A

Remark 1.1.2 The ray path r(s) in 3D is the orthogonal trajectory
to the Huygens wave front defined by a level set of Hamilton’s

characteristic function S(r) = constant. The geometric relation-
ship between wave fronts and ray paths is illustrated in Figure 1.2.

ray

Sr r +dr

g ray

VS(r)

Figure 1.2: Huygens wave front and one of its corresponding ray paths. The
wave fronts and ray paths form mutually orthogonal families of curves. The
gradient V.S(r) is normal to the wave front and tangent to the ray through it at
the point r.

Remark 1.1.3 As Newton discovered in his famous prism ex-
periment, the propagation of a Huygens wave front S(r,w) =
constant depends on the light frequency, w, through the frequency
dependence n(r,w) of the index of refraction of the medium.
Having noted this possibility, in what follows, we shall treat
monochromatic light of fixed frequency w and ignore effects of
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Jrequency dispersion. We will also ignore finite-wavelength ef-
Jects such as interference and diffraction of light. These effects
were discovered in a sequence of pioneering scientific investiga-
tions during the 350 years after Fermat. In his time, Fermat
discovered the geometric foundations of ray optics. This is our
focus.

Ray vector Fermat’s ray optics is complementary to Huygens’
wavelets. According to the Huygens wavelet assumption, a level set
of the wave front, S(r), moves along the ray vector, n(r), so that
its incremental change over a distance dr along the ray is given by

dSii=n(r)dr=n(r)ids" (EL51E1)

Theorem 1.1.4 (Huygens-Fermat complementarity)
Fermat’s eikonal equation (1.1.9) follows from the Huygens wavelet
equation (1.1.12)

dr
ds
by differentiating along the ray path.

VaS(m =) (Huygens equation) (LI TR

Corollary 1.1.5 The wave front level sets S(r) = constant and the
ray paths r(s) are mutually orthogonal.

Proof. The corollary follows once equation (1.1.13) is proved, be-
cause V.S(r) is along the ray vector and is perpendicular to the level
set of S(r). |

Proof. Theorem 1.1.4 is proved by applying the operation

d dr 1
—=—-V=-VS§.V
ds ds n

to Huygens equation (1.1.13). This yields the eikonal equation (1.1.9),
by the following reasoning:

ds ds n

d d 1 1 v 1
1ok <n—r> = V5 V(NS = —V|VS]2 — — N/n?2 =Vn.
2n 2n
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In this chain of equations, the first step substitutes
d/ldsi—"m S VASh sV

The second step exchanges order of derivatives. The third step uses
the modulus of the Huygens equation (1.1.13) and invokes the prop-
ety o sl =k |

Corollary 1.1.6 The modulus of the Huygens equation (1.1.13)
yields

IVS[(r) = n?(r) (scalar eikonal equation) (1.1.14)

which follows because dr/ds = § in equation (1.1.9) is a unit
vector.

This corollary arises as an algebraic result in the present consider-
ations. However, it also follows at a more fundamental level from
Maxwell’s equations for electrodynamics in the slowly varying am-
plitude approximation of geometric optics, cf. [BoWo1965], Chapter
3. See Keller [Kel1962] for the modern extension of geometric optics
to include diffraction. The scalar eikonal equation (1.1.14) is also
known as the Hamilton-Jacobi equation.

Theorem 1.1.7 (Ibn Sahl-Snell law of refraction)
The gradient in Huygens equation (1.1.13) defines the ray vector,

NE=AVSE—n(1)s (ESEIS)

of magnitude |n| = n. Integration of this gradient around a closed
path vanishes, thereby yielding

%DVS(I‘) Hdpe f;n(r) Sdn =0 (1.1.16)

Let’s consider the case in which the closed path P surrounds a bound-
ary separating two different media. If we let the sides of the loop
perpendicular to the interface shrink to zero, then only the parts of
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the line integral tangential to the interface path will contribute. Since
these contributions must sum to zero, the tangential components of
the ray vectors must be preserved. That 1s,

it )72 =10, (il

where the primes refer to the side of the boundary into which the ray
18 transmitted, whose normal vector is Zz. Now tmagine a ray piercing
the boundary and passing through the region enclosed by the integra-
tion loop. If 0 and 6 are the angles of incidence and transmission,
measured from the normal Z through the boundary, then preservation
of the tangential components of the ray vector means that

nsinf =n'sind’ . (1.1.18)
This is the Ibn Sahl-Snell law of refraction, credited to 1bn Sahl
(984) and Willebrord Snellius (1621). A similar analysis may be ap-

plied in the case of a reflected ray to show that the angle of incidence
must equal the angle of reflection.

<

Figure 1.3: Ray tracing version (left) and Huygens version (right) of the Ibn
Sahl-Snell law of refraction that nsin @ = n’ sin@’. This law is implied in ray optics
by preservation of the components of the ray vector tangential to the interface.
According to Huygens principle the law of refraction is implied by slower wave
propagation in media of higher refractive index below the horizontal interface.
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1.1.3 The eikonal equation for mirages

Air adjacent to a hot surface rises in temperature and becomes less
dense. Thus over a flat hot surface, such as a desert expanse or a
sun-baked roadway, air density locally increases with height and the
average refractive index may be approximated by a linear variation
of the form

n(x) = no(l + kx),

where z is the vertical height above the planar surface, ng is the
refractive index at ground level, and s is a positive constant. We
may use the eikonal equation (1.1.5) to find an equation for the
approximate ray trajectory. This will be an equation for the ray
height = as a function of ground distance z of a light ray launched
from a height zg at an angle 6y with respect to the horizontal surface
of the earth.
In this geometry, the eikonal equation (1.1.5) implies

1 d((l—f—me)i)
— =1z =&.
V1442 dz\ V14 22

For nearly horizontal rays, 2 < 1, and if the variation in refractive
index is also small then kx < 1. In this case, the eikonal equation
simplifies considerably to

d*x

e A fone il andi e (1.1.19)
z

Thus, the ray trajectory is given approximately by
rZ) =l ()i 27
K o X 5]
= (52 + tan 0pz + x0>x =27,

The resulting parabolic divergence of rays above the hot surface is
shown in Figure 1.4.

Exercise. Explain how the ray pattern would differ from
the rays shown in Figure 1.4 if the refractive index were
decreasing with height x above the surface, rather than
increasing. *
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-

Distance above hot planar surface

Distance along hot planar surface

Figure 1.4: Ray trajectories are diverted in a spatially varying medium whose
refractive index increases with height above a hot planar surface.

1.2 Hamiltonian formulation of ray optics

Definition 1.2.1 (Optical momentum)

The optical momentum (denoted as p) associated to the ray path
position q in an tmage plane, or image screen, at a fized value
of z along the optical axis is defined to be

L d
pza—,, with q::—q.
dz

@22
Remark 1.2.2 For the optical Lagrangian (1.1.3), this momentum
1S found to be

0L
D — 9 =nyd, which satisfies |p|>=n2(1—~%). (1.2.2)

Figure 1.5 illustrates the geometrical interpretation of this momen-
tum for optical rays as the projection along the optical axis of the ray
onto an tmage plane.
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\

Object Image
Plane Plane

Figure 1.5: Geometrically, the momentum p associated to the coordinate q by
equation (1.2.1) on the image plane at z turns out to be the projection onto the
plane of the ray vector n(q,z) = VS = n(q, z)dr/ds passing through the point
q(z). That is, |p| = n(q, z)sind, where cosf = dz/ds is the direction cosine of the
ray with respect to the optical z-axis.

From the definition of optical momentum (1.2.2), the correspond-
ing velocity q = dq/dz is found as a function of position and mo-
mentum (q,p) as

g = D : (1.2.3)
\/nQ(q) Z) o .p‘Q
A Lagrangian admitting such an invertible relation between ¢ and
p is said to be non-degenerate (or hyperregular [MaRal994]).
Moreover, the velocity is real-valued, provided

2 —ip|2ie0. @2

The latter condition is explained geometrically, as follows.

1.2.1 Geometry, phase space and the ray path

Huygens’ equation (1.1.13) summons the following geometric picture
of the ray path, as shown in Figure 1.5. Along the optical axis (the
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z-axis) each image plane normal to the axis is pierced at a point
q = (z,y) by the ray vector, defined as

3 dr
nifak 2h—"V.5 — n(q Z>E :

The ray vector is tangent to the ray path and has magnitude n(q, z).

This vector makes an angle 0(z) with respect to the z-axis at the

point q. Its direction cosine with respect to the z-axis is given by
diz de

S0 = Tho —— = — =77 126
coS 7 . 2 (11.2.5)

This definition of cos € leads by (1.2.2) to

Ip| = nsing. and. . \/n? —|p|? = ncosh. (@216

Thus, the projection of the ray vector n(q, z) onto the image plane is
the momentum p(z) of the ray. In three-dimensional vector notation,
this is expressed as

p(z) = n(q, 2) — z<z ‘n(q, z)) ; )

The coordinates (q(z),p(z)) determine each ray’s position and
orientation completely as a function of propagation distance z along
the optical axis.

Definition 1.2.3 (Optical phase space, or cotangent bundle)

The coordinates (q,p) € R? x R? comprise the phase space of
the ray trajectory. Position on an image plane is denoted q € R2.
Phase space coordinates are denoted (q,p) € T*R?. The notation
T*R? ~ R? x R? for phase space designates the cotangent bundle
of R?. The space T*R? consists of the union of all the position vec-
tors q € R? and all the possible canonical momentum vectors p € R?
at each position q.

Remark 1.2.4 The phase space T*R? for ray optics is restricted to
the disc,
Ip| <n(q,z2),
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| Image Z
Plane

Figure 1.6: The canonical momentum p associated to the coordinate q by
equation (1.2.1) on the image plane at z has magnitude |p| = n(q, z)sinf, where
cosf = dz/ds is the direction cosine of the ray with respect to the optical z-axis.

so that cos in (1.2.6) remains real. When n? = |p|?, the ray tra-
jectory s tangent to the image screen and is said to have grazing
inctdence to the screen at a certain value of z. Rays of grazing inci-
dence are eliminated by restricting the momentum in the phase space
for ray optics to lie in a disc |p|> < n?(q, z). This restriction implies
that the velocity will remain real, finite and of a single sign, which
we may choose to be positive (q > 0) in the direction of propagation.

1.2.2 Legendre transformation

The passage from the description of the eikonal equation for ray op-
tics in variables (q, g, z) to its phase space description in variables
(q, p, 2) is accomplished by applying the Legendre transformation
from the Lagrangian L to the Hamiltonian H, defined as,

H(q,p)=p-4—L(q,q,2) . (1.2.8)
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For the Lagrangian (1.1.3) the Legendre transformation (1.2.8) leads
to the following optical Hamiltonian,

H(q,p) = ny]d]® - n/y = —ny = = [n(q,2)> - [p*]"/*, (1.2.9)
upon using formula (1.2.3) for the velocity ¢(z) in terms of the posi-
tion q(z) at which the ray punctures the screen at z and its canonical
momentum there p(z). Thus, in the geometric picture of canonical
screen optics in Figure 1.5, the component of the ray vector along
the optical axis is (minus) the Hamiltonian. That is,

Z-nlq;z) =m(q, 2) costd— —H . (1.2.10)

Remark 1.2.5 The optical Hamiltonian in (1.2.9) takes real values,
so long as the phase space for ray optics is restricted to the disc
Ip| < n(q,2). The boundary of this disc is the zero level set of the
Hamiltonian, H = 0. Thus, flows that preserve the wvalue of the
optical Hamiltonian will remain inside its restricted phase space.

Theorem 1.2.6 The phase space description of the ray path fol-
lows from Hamilton’s canonical equations, which are defined
as

(el eOB )} dotarmiine Ol

With the optical Hamiltonian H(q,p) = — [n(q, 2)2 — |p]2] e
(1.2.9), these are

(L2 1)

1 ; -G

= iy L 19419
q P, = ( )

Jal

Proof. Hamilton’s canonical equations are obtained by differenti-
ating both sides of the Legendre transformation formula (1.2.8) to

find

OH OH OH
dH = Dol 54 —— o g —
(a4, p, 2) q+ op p + Pl q-+ 5, dz

oL

oL 5 i oL
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The coefficient of (dq) vanishes in this expression by virtue of the
definition of canonical momentum. Vanishing of this coefficient is re-
quired for H to be independent of . Identifying the other coefficients
yields the relations

oOH oOH oL ol @elb
Eiad o Se gy T el e PR T M T S e iy 1.2
op 9 dq dq dz 04 P ( )
and OH oL
T (2-14)

in which ones uses the Euler-Lagrange equation to derive the sec-
ond relation. Hence, one finds the canonical Hamiltonian formulas
@200 in ¢ Theorem 1.2 6. =

Definition 1.2.7 (Canonical momentum)

The momentum p defined in (1.2.1) that appears with the position
q in Hamilton’s canonical equations (1.2.11) is called the canonical
momentum.

Remark 1.2.8 (Momentum form of Ibn Sahl-Snell law)

The phenomenon of refraction may be seen as a break in
the direction's of the ray vector n(r(s)) = ns at a finite discon-
tinuity in the refractive index n = |n| along the ray path r(s).
According to the eikonal equation (1.1.9) the jump (denoted
by A) in three-dimensional canonical momentum across the
discontinuity must satisfy

J(dr/ds) or
This means the projections p and p’ of the ray vectors n(q, z)
and n'(q, z) which lie tangent to the plane of the discontinuity

in refractive index will be invariant. In particular, the lengths of
these projections will be preserved. Consequently,

Ip| = || “mplies nsin@ =n'sing’ -at 2 =0.
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This is again the Ibn Sahl-Snell law, now written in terms of
canonical momentum.

Exercise. How do the canonical momenta differ in the
two versions of Fermat’s principle in (1.1.10) and (1.1.11)?

Do their Ibn Sahl-Snell laws differ? Do their Hamiltonian
formulations differ? *

Answer. The first stationary principle (1.1.10) gives n(r(s))dr/ds
for the optical momentum, while the second one (1.1.11) gives its
reparameterised version n?(r(r))dr/dr. Because d/ds = nd/dr, the
values of the two versions of optical momentum agree in either pa-
rameterisation. Consequently, their Ibn Sahl-Snell laws agree.

The two Hamiltonian formulations differ, because the Lagrangian
in (1.1.10) is homogeneous of degree one in its velocity, while the La-
grangian in (1.1.11) is homogeneous of degree two. Consequently, un-
der the Legendre transformation, the Hamiltonian in the first formu-
lation vanishes identically, while the other Hamiltonian is quadratic
in its momentum, namely, H = |p|?/(2n)2. A

1.2.3 Paraxial optics and classical mechanics

Rays whose direction is nearly along the optical axis are called paraz-
tal. In a medium whose refractive index is nearly homogeneous,
paraxial rays remain paraxial and geometric optics closely resem-
bles classical mechanics. Consider the trajectories of paraxial rays
through a medium whose refractive index may be approximated by

e = = (A, 2 it v(0) 2) =100 and! . 2i(q.2)ing <ad.

Being nearly parallel to the optical axis, paraxial rays satisfy § <
1 and |p|/n < 1; so the optical Hamiltonian (1.2.9) may then be
approximated by

RIS PP
H:*n{l—ﬁ oY —ng+%—|—y(q,z).
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The constant ng here is immaterial to the dynamics. This calculation
shows the following.

Lemma 1.2.9 Geometric ray optics in the paraxial regime corre-
sponds to classical mechanics with a time dependent potential v(q, z),
upon identifying z < t.

Exercise. Show that the canonical equations for parax-
ial rays recover the mirage equation (1.1.19) when n =
ns(1l + kz) for & > 0.

Explain what happens to the ray pattern when x < 0.
*

1.3 Hamiltonian form of optical transmission

Proposition 1.3.1 (Canonical bracket)

Hamilton’s canonical equations (1.2.11) arise from a bracket opera-
tion,

QiisdHv ol Holki

h L — : — : : sl
e (1.3.1)
expressed in terms of position q and momentum p.
Proof. One directly verifies,
OH OH
gl e e e T e e
a=1{q, H} snanie {p, H} %
B

Definition 1.3.2 (Canonically conjugate variables)
The components q; and p; of position q and momentum p satisfy

fa, o= 0 (i.3:2)

with respect to the canonical bracket operation (1.5.1). Variables that
satisfy this relation are said to be canonically conjugate.
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Definition 1.3.3 (Dynamical systems in Hamiltonian form)
A dynamical system on the tangent space TM of a space M

%(t) = Ebdus pecihi
is sard to be in Hamiltonian form, if it can be expressed as
x(ai=p el i fore VHED VG RS (IL3.S)

in terms of a Poisson bracket operation {-, -}, which is a map
among smooth real functions F(M): M — R on M,

{, }: F(M) x F(M) — F(M), (1.3.4)

so that F = {F, H} for any F € F(M).

Definition 1.3.4 (Poisson bracket)
A Poisson bracket operation {-, -} is defined as possessing
the following properties:

1. It is bilinear,
2. skew symmetric, {F, H} = —{H, F},
3. satisfies the Leibnitz rule (product rule),
{FG,H}={F, H}G+ F{G, H},
for the product of any two functions F and G on M, and

4. satisfies the Jacobi identity

i err e C R e B (M E L =0
(1L35)
for any three functions F', G and H on M.

Remark 1.3.5 Definition 1.3.4 of Poisson bracket certainly includes
the canonical Poisson bracket in (1.5.1) that produces Hamilton’s
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canonical equations (1.2.11), in position q and conjugate momentum
p. However, this definition does not require the Poisson bracket to
be expressed in the canonical form (1.5.1).

Exercise. Show that the defining properties of a Pois-
son bracket hold for the canonical bracket expression in

@S0 e

Exercise. Compute the Jacobi identity (1.3.5) using the
canonical Poisson bracket (1.3.1) in one dimension for
=t EE=tFan dNEIRaToitzasy, *

Exercise. What does the Jacobi identity (1.3.5) imply
about {F', G} when F' and G are constants of motion, so
that {F', H} =0 and {G, H} for a Hamiltonian H?

*

. Definition 1.3.6 (Hamiltonian vector fields and flows)
A Hamiltonian vector field X is a map from a function

F € F(M) on space M with Poisson bracket {-, -} to a tangent
vector on its tangent space T'M given by the Poisson bracket.
When M is the optical phase space T*R?, this map is given by
the partial differential operator obtained by inserting the phase
space function F' into the canonical Poisson bracket,

Sl o s s e G

The solution x(t) = ¢T x of the resulting differential equation,
(@) = ok, 1B i sk e AU

yields the flow ¢f : Rx M — M of the Hamiltonian vector field
Xp on M. Assuming that it exists and is unique, the solution
x(t) of the differential equation is a curve on M parameterised
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by t € R. The tangent vector x(t) to the flow represented by the
curve X(t) at time t satisfies

%(t) = Xex(t),

which are the characteristic equations of the Hamailtonian vec-
tor field on manifold M.

Remark 1.3.7 (Caution about caustics)

Caustics were discussed definitively in a famous unpublished paper
written by Hamilton in 1825 at the age of 18. Hamilton later pub-
lished what he called “supplements” to this paper in [Hal830, Hal837].
The optical singularities discussed by Hamalton form in bright caus-
tic surfaces when light reflects off a curved mirror. In the present
context, we shall avoid caustics. Indeed, we shall avoid reflection
altogether and deal only with smooth Hamiltonian flows in media
whose spatial variation in refractive index is smooth. For a modern
discussion of caustics, see [Ar1994].

1.3.1 Translation invariant media

e If n = n(q), so that the medium is invariant under trans-
lations along the optical axis with coordinate z, then

z-n(q,z) =n(q,z)cosd = — H,

in (1.2.10) is conserved. That is, the projection z - n(q, z) of
the ray vector along the optical axis is constant in translation-
invariant media.

e For translation-invariant media, the eikonal equation (1.1.5)
simplifies via the canonical equations (1.2.12) to Newtonian
dynamics,

1 on? ‘
qz—ﬁ—ﬁ% for g€ R2. (1.3.6)
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e Thus, in translation-invariant media, geometric ray tracing for-
mally reduces to Newtonian dynamics in z, with a potential
—n?(q) and with “time” z rescaled along each path by the
constant value of v/2 H determined from the initial conditions
for each ray at the object screen at z = 0.

Remark 1.3.8 In media for which the index of refraction is not
translation-invariant, the optical Hamiltonian n(q, z) cosd = —H is
not generally conserved.

1.3.2 Axisymmetric, translation-invariant materials

In axisymmetric, translation-invariant media, the index of refraction
may depend on the distance from the optical axis, r = |q|, but does
not depend on the azimuthal angle. As we have seen, translation
invariance implies conservation of the optical Hamiltonian. Axisym-
metry implies yet another constant of motion. This additional con-
stant of motion allows the Hamiltonian system for the light rays to
be reduced to phase plane analysis. For such media, the index of
refraction satisfies

n(dye) = n)h | pwherel drt—q (LB
Passing to polar coordinates (r, ¢) yields

a = (z,y) =r(cosg, sing),
P = (PzDy)
(pr cos @ — pysing/r, p,sing + pgcos ¢/r)

I

so that
p|®> =p2 +p5/r°. (1.3.8)

Consequently, the optical Hamiltonian,
1/2
H = — [n(r) — p? — p3/7%]"", (1.3.9)

is independent of the azimuthal angle ¢. This independence of angle
¢ leads to conservation of its canonically conjugate momentum py,
whose interpretation will be discussed in a moment.
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Exercise. Verify formula (1.3.9) for the optical Hamil-
tonian governing ray optics in axisymmetric, translation-
invariant media by computing the Legendre transforma-
tion. *

Answer. Fermat’s principle 05 = 0 for S = [ L dz an axisymmetric,
translation-invariant material may be written in polar coordinates
using the Lagrangian

L:n(r)\/1+7'“2—|—7"2<ﬁ2,

from which one finds

sl 6_L i n(r)r
2 1o, fpiegan, i
and ;
Py la_L A n(r)ro

TOTO 142424

Consequently, the velocities and momenta are related by

9 2 /1)
vy \/1 L Dl G TR
V1472 + 1242 e

which allows the velocities to be obtained from the momenta and
positions. The Legendre transformation (1.2.9),

H(T7prap¢) T f'p?“ un ¢p¢ e L(?‘,’f’, ¢) >

then yields formula (1.3.9) for the optical Hamiltonian. A

Exercise. Interpret the quantity py in terms of the vec-
tor image-screen phase space variables p and q. *
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Answer. The vector q points from the optical axis and lies in the
optical (x,y) or (r, ¢) plane. Hence, the quantity Dy may be expressed
in terms of the vector image-screen phase space variables p and q as

px gl = pflal’ -~ (@ a) —p, (1.3.10)

This may be obtained by using the relations
P2
pl*=pi+=%, la’=r® and a-p=rp;.

One interprets p, = p X q as the area spanned on the optical
screen by the vectors q and p. A
1.3.3 Hamiltonian optics equations, polar coordinates

Hamilton’s equations in polar coordinates are defined for axisymmet-
ric, translation-invariant by the canonical Poisson brackets with the
optical Hamiltonian (1.3.9),

SOl _BH__&

r Y {T7H}_8pr_ H,

. OH 1 0 P2

pr = {pr,H}:—E:*ﬁE <n2(7“)7§>7

o el B

¢ = {¢ H}—8p¢_ — (1.3.11)
) OH

In the reduced phase space dynamics for 7(z), p,(z), the constants of
the motion py, H, may be regarded as parameters that are set by the
initial conditions. The dynamics of the azimuthal angle, or phase,
¢(z) in polar coordinates decouples from the rest and may be found
separately, after solving for r(z) and p,(2).

Remark 1.3.9 (Evolution of azimuthal angle)
The polar canonical equation for ¢(z) in (1.8.11) implies, for a given
orbit r(z), that the phase may be obtained as a quadrature,

Bl sreaie, J01 G LEh L
Agb(z)—/ s dz— 7 () dz (L30%)
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where py and H are constants of the motion. Because in this case
the integrand is a square, the polar azimuthal angle, or phase, A¢(2)
must either increase or decrease monotonically in azisymmetric ray
optics, depending on whether the sign of the conserved ratio py/H is
negative, or positive, respectively. Moreover, for a fized value of the
ratio py/H, rays that are closer to the optical axis circulate around
it faster.

The reconstruction of the phase for solutions of Hamilton’s opti-
cal equations (1.3.11) for ray paths in an axisymmetric, translation-
invariant medium has some interesting geometric features for peri-
odic orbits in the radial (7, p,) phase plane.

1.3.4 Geometric phase for Fermat’s principle

One may decompose the total phase change around a closed periodic
orbit of period Z in the phase space of radial variables (r,p,) into
the sum of the following two parts:

7{194) doF=SpHINOI=F = j{})r dr + %p -dq . (LS 1L3)

Geometric  Dynamic

On writing this decomposition of the phase as

A(b 57 Ag/)geom T A¢dyn ’

one sees that

1 ‘
p(/)Angeom T E ]{p,zdz = e // dp,« A dr (].3.14)

is the area enclosed by the periodic orbit in the radial phase plane.
Thus, the name: geometric phase for A¢geom, because this part of
the phase only depends on the geometric area of the periodic orbit.
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The rest of the phase is given by
PeAPayn = ]{ p-dq
?{ ( 0H = o0H ) s
= p,r,—————— _—
9 O
2
ml P
e

= H7§ - n(la(=))))d=

= 7kl ﬁ< o (@:3415)
where the loop integral § n?(|q(z)|)dz = Z(n?) defines the average
(n?) over the orbit of period Z of the squared index of refraction.
This part of the phase depends on the Hamiltonian, orbital period
and average of the squared index of refraction over the orbit. Thus,
the name: dynamsic phase for A¢y,,, because this part of the phase
depends on the dynamics of the orbit, not just its area.

1.3.5 Skewness
Definition 1.3.10 The quantity

P =P X A= Yps — TPy, (1.3.16)
is called the skewness function.’

Remark 1.3.11 By (1.8.11) the skewness is conserved for rays in
axisymmetric media.

Remark 1.3.12 Geometrically, the skewness given by the cross prod-
uct S = p X q is the area spanned on an image screen by the vectors
p and q. This geometric conservation law for screen optics was first
noticed by Lagrange in parazial lens optics and it is still called La-
grange’s invariant in that field. On each screen, the angle, length

2This is short notation for p, = % - p X q. Scalar notation is standard for a
vector normal to a plane that arises as a cross product of vectors in the plane.
Of course, the notation for skewness S cannot be confused with the action S.
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and point of intersection of the ray vector with the screen may vary.
However, the oriented area S = p x q will be the same on each
screen, for rays propagating in an azisymmetric medium. This is the
geometric meaning of Lagrange’s invariant.

Image %
Plane

Figure 1.7: The skewness S = p x q of a ray n(q, z) is an oriented area in
an image plane. For axisymmetric media, skewness is preserved as a function
of distance z along the optical axis. The projection % - n(q, z) is also conserved,
provided the medium is invariant under translations along the optical axis.

Conservation of the skewness function Py = P x q follows in the
reduced system (1.3.11) by computing

dpg oOH
—— = B~ —— — 0
i {p¢a } >

which vanishes because the optical Hamiltonian for an axisymmetric
medium is independent of the azimuthal angle ¢ about the optical
axis.

Exercise. Check that Hamilton’s canonical equations for
ray optics (1.2.12) with the optical Hamiltonian (1.2.9)
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conserve the skewness function py = p X q when the
refractive index satisfies (1.3.7). *

Remark 1.3.13 The values of the skewness function characterise
the various types of rays [Wo2004].

o Vanishing of p X q occurs for meridional rays, for which
p X q = 0 tmplies that p and q are collinear in the image plane

(Pl a)-

o On the other hand, ps takes its mazimum value for sagittal
rays, for which p-q = 0, so that p and q are orthogonal in
the image plane (p L q).

e Rays that are neither collinear nor orthogonal are said to be
skew rays.

Exercise.

(Phase plane reduction)

(1) Solve Hamilton’s canonical equations for axisymmet-
ric, translation invariant media in the case of an optical
fibre with radially varying index of refraction in the fol-
lowing form:

n?(r) = A2+ (p—vr?)?, A, p, v = constants,

by reducing the problem to phase plane analysis. How
does the phase space portrait differ between p, = 0 and
py # 07 What happens when v changes sign?

(2) What regions of the phase plane admit real solutions?
Is it possible for a phase point to pass from a region with
real solutions to a region with complex solutions during
its evolution? Prove it.

(3) Compute the dynamic and geometric phases for a
periodic orbit of period Z in the (r,p,) phase plane.

Hint: For py # 0 the problem reduces to a Duffing os-
ctllator (Newtonian motion in a quartic potential) in a
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rotating frame, up to a rescaling of time by the value of
the Hamiltonian on each ray “orbit”.

See [HoKo1991] for a discussion of optical ray chaos under
periodic perturbations of this solution. *

1.3.6 Lagrange invariant: Poisson bracket relations

Under the canonical Poisson bracket (1.3.1), the skewness function,
or Lagrange invariant,

S=py=2%2-pXq=yp; — TPy, (1.3.17)

generates rotations of q and p jointly in the image plane. Both q
and p are rotated by the same angle ¢ around the optical axis z. In
other words, the equation (dq/d¢,dp/d¢) = {(a,p), S} defined by
the Poisson bracket,

d 0 0
%:XS:{.75}:qxz-a—q+pxz-%, (1.3.18)
has the solution,
a(¢) ) o ( R.(¢) 0 ) ( q(0) )
< 4y T e (1.3.19)
Here the matrix
L [fcosion s
o) - < sing  cos¢ ) S

represents rotation of both q and p by an angle ¢ about the optical
axis.

Remark 1.3.14 The application of the Hamiltonian vector field X
for skewness in (1.3.18) to the position vector q yields

Xsq=—"7 Xq. @ 321

Likewise, the application of the Hamiltonian vector field Xg for skew-
ness in (1.3.18) to the momentum vector yields

Xsp=—ZXxXp. @8322)

Thus, the application of Xg to the vectors p and q rotates them both
by the same angle.
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Definition 1.3.15 (Diagonal action & cotangent lift)
Together, formulas (1.8.21) - (1.3.22) comprise the diagonal action
on (q,p) of azial rotations about z. The rotation of the momentum
vector p that is induced by the rotation of the position vector q is
called the cotangent lift of the action of the Hamiltonian vector
field Xs. Namely, (1.8.22) is the lift of the action of rotation (1.3.21)
from position vectors to momentum vectors.

Remark 1.3.16 (Moment of momentum)

Applying the Hamiltonian vector field Xg for skewness in (1.5.18)
to screen coordinates q = R? produces the infinitesimal action of
rotations about Z, as

4 dq
Xsq = {q, S}=—Z><q=d— ;
The skewness function S in (1.3.17) may be expressed in terms of
two different pairings,

g = <<p,qu>>=p~(—2><q) and
S = (Pxa)-2=(Ip a),2)=J(p,q). (13.23)

Although these pairings are both written as dot-products of vectors,
strictly speaking they act on different spaces. Namely,

<< o >> : (momentum) x (velocity) — R, (1.3.24)

< 7 > : (moment of momentum) X (rotation rate) — R.

The first pairing (-, -)) is between two vectors that are tangent to
an optical screen. These vectors represent the projection of the ray
vector on the screen p and the rate of change of the position q
with azimuthal angle, dq/d¢ in (1.3.21). This is also the pairing
(-, ) between wvelocity and momentum that appears in the Legen-
dre transformation. The second pairing (-, -) is between the ori-
ented area p X q and the normal to the screen z. Thus, as we knew,
J%(p, 4) = S(p, q) is the Hamiltonian for an infinitesimal rotation
about the 2 azis in R3,
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Definition 1.3.17 Distinguishing between the pairings in (1.3.23)
interprets the Lagrange invariant S = J*(p,q) = p X q - Z as the
Z-component of a map from phase space with coordinates (p, q) to
the oriented area J(p, q) = p X q, or moment of momentum.

Definition 1.3.18 (Momentum map for cotangent lift)
Formula (1.3.23) defines the momentum map for the cotangent
lift from position vectors to their canonically conjugate momen-
tum wvectors in phase space of the action of rotations about Z.
In general, a momentum map applies from phase space to the
dual space of the Lie algebra of the Lie group whose action s
involved. In this case, it is the map from phase space to the
moment-of-momentum space, M,

J: T"R2 - M, namely, J(p,q)=px4qg, (653725

and p X q s dual to the rotation rate about the axial direction
7 under the pairing given by the three-dimensional scalar (dot)
product. The corresponding Hamiltonian is the skewness

S =\/E (pra)i= I Zi=p) >GaZ

in (1.8.23). This is the real-valued phase space function whose
Hamiltonian vector field Xg rotates a point P = (q,p) in phase
space about the optical axis Z at its centre, according to

4 xP=XysP={P,J -2} (1.3.26)

Remark 1.3.19 The skewness function S and its square, S? (called
the Petzval invariant [Wo2004]) are conserved for ray optics in
azisymmetric media. That is, the canonical Poisson bracket vanishes

167 8- =), (320
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for optical Hamiltonians of the form,
1/2
H=-[nlaP? 6P - (1.3.28)

The Poisson bracket (1.3.27) vanishes because |q|? and |p|? in H
both remain invariant under the simultaneous rotations of q and p
about z generated by S in (1.3.18).

1.4 Axisymmetric invariant coordinates

Transforming to axisymmetric coordinates and azimuthal angle in
the optical phase space is similar to passing to polar coordinates
(radius and angle) in the plane. Passing to polar coordinates by
(z,y) — (r,¢) decomposes the plane R? into the product of the real
line » € R" and the angle ¢ € S'. Quotienting the plane by the
angle leaves just the real line. The quotient map for the plane is

m: R2{0} — R\{0} : (z,y) — . (1.4.1)

The S! angle in optical phase space T*R? is the azimuthal angle. But
how does one quotient the four-dimensional 7°R? by the azimuthal
angle?

As discussed in Section 1.3.3, azimuthal symmetry of the Hamil-
tonian summons the transformation to polar coordinates in phase
space, as

(q7 p) e (Tapr;pq%qb) .

This transformation reduces the motion to phase planes of radial
(r, pr) position and momentum, defined on level surfaces of the skew-
ness ps. The trajectories evolve along intersections of the the level
sets of skewness (the planes p, = const) with the level sets of the
Hamiltonian H (7, pr,ps) = const. The motion along these intersec-
tions is independent of the “ignorable” phase variable ¢ € S*, whose
evolution thus decouples from that of the other variables. Conse-
quently, the phase evolution may be reconstructed later by a quadra-
ture, i.e., an integral that involves the parameters of the “reduced
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phase space”. Thus, in this case, azimuthal symmetry decomposes
the phase space ezactly as

T*R*\{0} ~ (T*(R\{0}) x R) x S'. (1.4.2)
The corresponding quotient map for azimuthal symmetry is

m: T'R\{0} — T*(R\{0}) xR : (q,p) = (r,pr;pg).  (1.4.3)

An alternative procedure exists for quotienting out the angular de-
pendence of an azimuthally symmetric Hamiltonian system, which
is independent of the details of the Hamiltonian function. This al-
ternative procedure involves transforming to quadratic azimuthally
invariant functions.

Definition 1.4.1 (Quotient map to quadratic S' invariants)
The quadratic azisymmetric invariant coordinates in R3\{0}
are defined by the quotient map?

r: TR0} - R0} : (q,p) — X = (X1, X5, X3),  (14.4)
given explicitly by the quadratic monomials,
6= (el 20 5= et 205 2 = ipialk (1.4.5)
The quotient map (1.4.4) is written a bit more succinctly as

P La)i= X (1.4.6)

Theorem 1.4.2 The vector (X1, Xo, X3) of quadratic monomials in
phase space all Poisson-commute with skewness S,

e — 0 el ) s ) (1.4.7)

Proof. These three Poisson brackets with skewness S all vanish
because dot products of vectors are preserved by the joint rotations
of q and p that are generated by S. ]

3The transformation T7*R? — R® in (1.4.5) will be recognised later as another
example of a momentum map.
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Remark 1.4.3 The orbits of S in (1.83.19) are rotations of both q
and p by an angle ¢ about the optical axis at a fixed position z.
According to the relation {S, X} = 0, the quotient map X = 7 (p, q)
in (1.4.4) collapses each circular orbit of S on a given image screen in
phase space T*R?\{0} to a point in R3\{0}. The converse also holds.
Namely, the inverse of the quotient map 7 'X for X € Imagen
consists of the circle (S') generated by the rotation of phase space
about its centre by the flow of S.

Definition 1.4.4 (Orbit manifold)
The image in R of the quotient map m : T*R?\{0} — R3\{0} in
(1.4.4) is the orbit manifold for azisymmetric ray optics.

Remark 1.4.5 (Orbit manifold for axisymmetric ray optics)
The image of the quotient map 7 in (1.4.4) may be conveniently dis-
played as the zero-level set of the the relation

GRG0 G e P =) =T (1.4.8)

among the azisymmetric variables in equation (1.4.5). Consequently,
a level set of S in the quotient map T*R?\{0} — R3\{0} obtained by
transforming to S* phase space invariants yields an orbit manifold
defined by C(X1, Xo, X3, S) = 0 in R3\{0}.

For azisymmetric ray optics, the image of the quotient map m in R3
turns out to be a family of hyperboloids of revolution.

1.5 Geometry of invariant coordinates

In terms of the axially invariant coordinates (1.4.5), the Petzval in-
variant and the square of the optical Hamiltonian satisfy

Ipxal® = plal*=(p-q)® and H2=n(|q?)=|p/®>0. (1.5.1)
That is,
SR =0 O el e DG e G O (W)

The geometry of the solution is determined by the intersections of
the level sets of the conserved quantities S? and H?. The level sets of
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S? € R? are hyperboloids of revolution around the X; = X5 axis in
the horizontal plane defined by X3 = 0. The level-set hyperboloids
lie in the interior of the S = 0 cone with X7 > 0 and X5 > 0. The
level sets of H? depend on the functional form of the index of refrac-
tion, but they are X3-independent. The ray path in the S'-invariant
variables X = (X1, X2, X3) € R3 must occur along intersections of
S? and H?, since both of these quantities are conserved along the
ray path in axisymmetric translation-invariant media.

9. € :p.q:Y3

X]:q2

Figure 1.8: Level sets of the Petzval invariant S* = X; X» — X2 are hyperboloids
of revolution around the X; = X axis (along Y1) in the horizontal plane, X3 =
0. Level sets of the Hamiltonian H in (1.5.2) are independent of the vertical
coordinate. The axisymmetric invariants X € R® evolve along the intersections
of these level sets by X = V8% x VH, as the vertical Hamiltonian knife H =
constant slices through the hyperbolic onion of level sets of S?. In the coordinates,
Yo = (Xl -+ XQ)/2,Y2 = (XQ — Xl)/Q,Yg = Xg, one has S? = Y12 — Y22 — YE;Q.
Being invariant under the flow of the Hamiltonian vector field Xs = {-, S}, each
point on any layer H? of the hyperbolic onion H?® consists of an S* orbit in phase
space under the diagonal rotation (1.3.19). This orbit is a circular rotation of
both q and p on an image screen at position z by an angle ¢ about the optical
axis.
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One would naturally ask how the quadratic phase space quantities
(X1, X2, X3) Poisson-commute among themselves. However, before
addressing that question, let us ask the following.

Question 1.5.1

How does the Poisson bracket with each of the axisymmetric
quantities (X1, Xo, X3) act as a derivative operation on functions
of the phase space variables q and p?

Remark 1.5.2
Answering this question introduces the concept of flows of Hamil-
tonian vector fields.

1.5.1 Flows of Hamiltonian vector fields

Theorem 1.5.3 (Flows of Hamiltonian vector fields)

Poisson brackets with the S*-invariant phase space functions X1, Xo
and X3 generate linear homogeneous transformations of (q, p) €
T*R?, obtained by regarding the Hamiltonian vector fields ob-
tained as in Definition 1.3.6 from the Poisson brackets as derivatives,

d d d
— =14, X —={-, X Bicte—c =ik 65,3
dTl { Y 1}7 dTQ { Y 2} an d’/"g { 9 3}7 ( )
in their flow parameters 71, 1o and T3, respectively.

The flows themselves may be determined by integrating the char-
acteristic equations of these Hamiltonian vector fields.

Proof.

e The sum %(Xl + X3) is the harmonic-oscillator Hamiltonian.
This Hamiltonian generates rotation of the (q, p) phase space
around its centre, by integrating the characteristic equa-
tions of its Hamziltonian vector field,

d 1 0 0
—_— = .. — = . — — . —_ s 4
- { ,2(X1+X2)} Pl e iiiking (1.5.4)
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To see this, write the simultaneous equations

al5)=1(5) s0um},

or in matrix form,?

o Gl e o

for the 2 x 2 traceless matrices m; and ms defined by

Q) 052
m1:<_2 0) and m2:<0 ())'

These w-dynamics may be rewritten as a complex equation,

%(q—!—z’p) = —i(q +ip), (1.5.5)

whose immediate solution is
a(w) +ip(w) = e~ (a(0) +ip(0)) .

This solution may also be written in matrix form as

(oo W o Sl ) G

which is a diagonal clockwise rotation of (q,p). This solu-
tion sums the following exponential series

w(mit+ma)/2 _ e
A i Z n! ( -1 0 >

=0

o o G

—sinw Ccosw

This may also be verified by summing its even and odd powers
separately.

“For rotational symmetry, it is sufficient to restrict attention to rays lying in a

fixed azimuthal plane and, thus, we may write these actions using 2 x 2 matrices,
rather than 4 X 4 matrices.
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Likewise, a nearly identical calculation yields

%@):%(Tnz—ml)(g):(? é)(ﬁ)

for the dynamics of the Hamiltonian H = (|p|? — |q|?)/2. The
time, the solution is the hyperbolic rotation

e L e

which, in turn, sums the exponential series

(0.}

gma—m)/z _ 3T ( (1) é )
!

n=—=

= cosh~y sinh~y
= < sinhy cosh~y ) i )

e In ray optics, the canonical Poisson bracket with the quadratic
phase space function X; = |q|? defines the action of the follow-
ing linear Hamiltonian vector field:

%:{.,Xl}:—2q-%. (1.5.10)

This action may be written equivalently in matrix form as

S )

Integration of this system of equations yields the finite trans-
formation

() = o (o)
e )

= Mi(n) ( ggg; > . (1.5.11)



40

CHAPTER 1. FERMAT’S RAY OPTICS

This is an easy result, because the matrix m; is nilpotent.

That is, m? = ( 8 8 >, so the formal series representing the

exponential of the matrix

(©.9)

1
e — Z ;l—'(ﬁml)” 52

n=0

truncates at its second term. This solution may be interpreted
as the action of a thin lens [Wo2004].

Likewise, the canonical Poisson bracket with X9 = |p|? defines
the linear Hamiltonian vector field,

&%:{.’XQ}:2P-%. ()

In matrix form, this is

It i) ==l g )

in which the matrix ms is also nilpotent. Its integration gen-
erates the finite transformation

o) s
- (6 T)G0)
= W) ( ggg; ) : (1.5.14)

corresponding to free propagation of light rays in a homoge-
neous medium.

The transformation generated by X3 = q - p compresses phase
space along one coordinate and expands it along the other,
while preserving skewness. Its Hamiltonian vector field is

d 0 0
0 e e e
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Being linear, this may be written in matrix form as

s p ) =05 J(3 ) == {SF

The integration of this linear system generates the flow, or finite
transformation,

B e
b S
= M;s(3) ( a(0) ) : (1.5.15)

whose exponential series is easily summed, because ms is diago-
nal and constant. Thus, the quadratic quantity X3 generates a
transformation that takes one harmonic-oscillator Hamiltonian
into another one corresponding to a different natural frequency.
This transformation is called squeezing of light.

The proof of Theorem 1.5.3 is now finished. |

1.6 Symplectic matrices

Remark 1.6.1 (Symplectic matrices)

Poisson brackets with the quadratic monomials on phase space X1, X, X3
correspond respectively to multiplication by the traceless constant ma-
trices mi, ma, ms3. In turn, exponentiation of these traceless constant
matrices leads to the corresponding matrices My (11), Ma(12), M3(73)

i equations (1.511), (1.5:1%) and (1.5.15). Lhe latter are 2 % 2
symplectic matrices. That is, these three matrices each satisfy

M;(1)IM; ()T =J  (no sum oni=1,2,3), (1.6.1)

J = ( g _01 ) : (1.6.2)

where
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By their construction from the axisymmetric invariants X1, Xo, X3,
each of the symplectic matrices My (1), Ma(12), M3(73) preserves the
cross product S = p X Q.

Definition 1.6.2 (Lie transformation groups)

e A transformation is a one-to-one mapping of a set onto
itself.

o A collection of transformations is called a group, provided:
— 4t includes the identity transformation and the inverse of
each transformation;

— it contains the result of the consecutive application of any
two transformations; and

— composition of that result with a third transformation is
associative.

e A group is a Lie group, provided its transformations de-
pend smoothly on a set of parameters.

Theorem 1.6.3 (Symplectic group Sp(2,R))
Under matriz multiplication, the set of 2 x 2 symplectic matrices
forms a group.

Exercise. Prove that the matrices M (71), Ma(72), M3(73)
defined above all satisfy the defining relation (1.6.1) re-
quired to be symplectic. Prove that these matrices form
a group under matrix multiplication. Conclude that they
form a three-parameter Lie group. *

Theorem 1.6.4 (Fundamental theorem of planar optics)
Any plane parazial optical system, represented by a 2 X 2 symplectic
matriz M € Sp(2,R) may be factored into subsystems consisting of
products of three subgroups of the symplectic group, as

cosw  Sinw ek v 0 a0
e < —sinw cosw ) < ) i o ) < Ol ) (1.6.3)
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This is a general result, called the Iwasawa decomposition of the
symplectic matriz group, usvally written as [Gel961]

Sp(2,R) = KAN. (1.6.4)

The rightmost matriz factor (nilpotent subgroup N) corresponds to
a thin lens, whose parameter 21 is called its Gaussian power
[Wo02004]. This factor does not affect the image at all, since q(r) =
q(0) from equation (1.5.11). However, the rightmost factor does
change the direction of the rays that fall on each point of the screen.
The muddle factor (Abelian subgroup A) magnifies the image by the
factor €™, while squeezing the light so that the product q-p remains
the invariant as in equation (1.5.15). The leftmost factor (the maz-
imal compact subgroup K) is a type of Fourier transform in angle
w € S on a circle as in equation (1.5.6).

For insightful discussions and references to the literature in the
design and analysis of optical systems using the symplectic matrix
approach, see, e.g., [Wo2004]. For many extensions of these ideas
with applications to charged-particle beams, see [Dr2007].

Definition 1.6.5 (Hamiltonian matrices)
The traceless constant matrices

0 U it gl B0 -
ml—(_2 O),mQ—(O 0>,m3—<0 _1>, UL(6.5)

whose exponentiation defines the Sp(2,R) symplectic matrices
gt = Vil ez — Vb)) ¥ et WG - (1.616)

and which are the tangent vectors at their respective identity
transformations,

my = {IWQ(T])/\/[r]<Tl) -
JT1:O

m = (MM )]
=0

mg = {ﬂifglg(/’g)]\/f;;_l(@) : @67
i)

are called Hamzaltonian matrices.
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Remark 1.6.6

e From their definitions, the Hamiltonian matrices m; with i =
1,2,3, each satisfy

Wclactsy o A0 Swhereng /= ( (1) _Ol ) . (1.6.8)
Exercise. Tuake the derivative of the definition of
symplectic matrices (1.6.1) to prove statement (1.6.8)
about Hamiltonian matrices. *

o The respective actions of the symplectic matrices M, (11), Ma(T2),
M3(m3) in (1.6.6) on the phase space vector (q, p)’ are the
flows of the Hamiltonian vector fields {-, X1}, {-, X2}, and
{-, X3} corresponding to the axisymmetric invariants Xy, Xo
and X3 in (1.4.5).

e The quadratic Hamiltonian,

(i i == %(X'[—FXQ)—I—%(XQ—Xl)—i-TX:; (169)

w ”/
= §(lpi2 +lal®) + §(Ip|2 —la*) +7q-p,

18 associated to the Hamillonian matriz,

w
I RTA T — —2—(m,1 +ma) + %(mz —m1) + Tms
a ( T oytw ) . (1.6.10)
e e L

The eigenvalues of the Hamiltonian matriz (1.6.10) are deter-
mined from

N e A= Qo il w/N= deltn = 0F =9 — s (LG
Consequently, the eigenvalues come in pairs, given by

A= VA = /72442 — 02, (1.6.12)

The Hamiltonian flows corresponding to these eigenvalues change
type, depending on whether A < 0 (hyperbolic), A = 0 (parabolic),
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or A > 0 (elliptic), as illustrated in Figure 1.9 and summarised
in the table below, cf. [Wo02004]. The action of a symplectic
matriz M(71;) on a Hamiltonian matriz m(w,v,7) by matric
conjugation m — m' = M (r;)mM~1(r;) (no sumoni=1,2,3)
may alter the values of (w,~y, T). However, this action preserves
eigenvalues, so it preserves the value of the determinant A.

Harmonic (elliptic) orbit Trajectories: Ellipses
=l A =g mH=<_01 é)

Free (parabolic) orbit Trajectories: Straight lines
AEIOEEI== — mH:(g é)
Repulsive (hyperbolic) orbit  Trajectories: Hyperbolas
A=—1, =41 mH:<(1) é)

Remark 1.6.7 (Prelude to Lie algebras)

e In terms of the Hamiltonian matrices the KAN decomposition
(1.6.3) may-be written as

i = R S T (1.6.13)
e Under the matriz commutator [m;, m;| :== m;m;—m;m;, the
Hamiltonian matrices m; with © = 1,2,3, close among them-
selves, as
[m1, ma] = 4mz, [mg,m3] =—2my, [m3,ma|=—2m;.

The last observation (closure of the commutators) summons the def-
inition of a Lie algebra. For this, we follow [O12000].
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A <0

Figure 1.9: The flows corresponding to exponentiation of the Hamiltonian ma-
trices with parameters (w,~,7) € R3 are divided into three families of orbits
defined by the sign of the discriminant A = w? -~ — 72. These three families of
orbits are hyperbolic (A < 0), parabolic (A = 0) and elliptic (A > 0). The action
by matrix conjugation of a symplectic matrix on a Hamiltonian matrix changes
the parameters (w,v,T) € R?3, while preserving the value of the determinant A.

1.7 Lie algebras

1.7.1 Definitions

Definition 1.7.1 A Lze algebra is a vector space g together with a
bilinear operation

[, ]:axg—g,
called the Lie bracket for g, that satisfies the defining properties:
(a) Bilinearity, e.q.,
[au + bv, w] = alu, w| + b[v, w],
for constants (a,b) € R and any vectors (u,v,w) € g;

(b) Skew symmetry
[u, w] = —[w, ul;



1.7. LIE ALGEBRAS 47

(¢) Jacobi identity
[u> [V’ WH+[V’ [W7 u]]—}—[w, [u7 V” =0,

for all u,v,w in g.

1.7.2 Structure constants

Suppose g is any finite dimensional Lie algebra. The Lie bracket
for any choice of basis vectors {ej, ..., e,} of g must again lie in

g. Thus, constants cfj exist 7,7,k = 1,2,...,r, called the structure
constants of the Lie algebra g, such that

[ei, €] = cf’jek. (kb
Since the {eq, ..., e,} form a vector basis, the structure constants

in (1.7.1) determine the Lie algebra g from the bilinearity of the
Lie bracket. The conditions of skew symmetry and the Jacobi iden-
tity place further constraints on the structure constants. These con-
straints are:

(i) Skew symmetry

Gl ety @ 7.2
and
(ii) Jacobi identity
cli i + e + el = 0. (1.7.3)

Conversely, any set of constants cfj that satisfy relations (1.7.2) and
(1.7.3) defines a Lie algebra, g.

Exercise. Prove that the Jacobi identity requires the
relation (1.7.3). *

Answer. The Jacobi identity involves summing three terms of the

form.,

lew, lenseil] = ij[el, ex] = cf}c}%‘em.

Summing over the three cyclic permutations of (1,4, ) of this expres-
sion yields the required relation (1.7.3) among the structure constants
for the Jacobi identity to hold.

A
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1.7.3 Commutator tables

A convenient way to display the structure of a finite dimensional
Lic algebra is to write its commutation relations in tabular form.
If g is an r-dimensional Lie algebra and {ei, ..., e,} forms a basis
of g, then its commutator table will be the r x r array whose
(i,7)-th entry expresses the Lie bracket [e;, e;]. Commutator tables
are always antisymmetric since [e;, €;] = —[e;, e;]. Hence, the
diagonal entries all vanish. The structure constants may be easily
read off the commutator table, since cfj is the coefhicient of e in the
(i, 7)-th entry of the table.

For example, the commutator table of the Hamiltonian matrices
in equation (1.6.7) is given by

el am s
P A 0 Ay o)
[mi, mj] = cimy = 5 O e iy (1.7.4)
ms —2772-1 2m2 0

The structure constants are immediately read off the table as

3 bl T o gonE e S MR S|
Clg =4=—ch, Cj3=0C3 =2=—Ch3=—C3p,

and all the other (:fj’s vanish.

Proposition 1.7.2 (Structure constants for sp(2,R))

The commutation relations in (1.6.7) for the 2 x 2 Hamiltonian ma-
trices define the structure constants for the symplectic Lie algebra
sp(2,R).

Proof. The exponentiation of the Hamiltonian matrices was shown
in Theorem 1.5.3 of Section 1.5.1 to produce the symplectic Lie
group, Sp(2,R). Likewise, the tangent space at the identity of the
symplectic Lie group Sp(2,R) is the symplectic Lie algebra, sp(2, R),
a vector space whose basis may be chosen as the 2 x 2 Hamiltonian
matrices. Thus, the commutation relations among these matrices
yield the structure constants for sp(2,R) in this basis. B




.7, LIE ALGEBRAS 49

1.7.4 Poisson brackets among axisymmetric variables

Theorem 1.7.3 The canonical Poisson brackets among the azisym-
metric variables X1, Xo and X3 in (1.4.5) close among themselves,

DG xal =0, DG G =20, DG X=-2.

In tabular form, this is

{'a } Xl X2 X3

. == Ot e
Xl ol oy g s tusig (17.5)

X3 —2X; 2X5 0

Proof. The proof is a direct verification using the chain rule for
Poisson brackets,

0X; OX;
i X} = — e i
G, G 5 {24, zB}@zA 2 C276)

for the invariant quadratic monomials X;(z4) in (1.4.5). Here one
denotes z4 = (qa,pa), with A =12, 3. |

Remark 1.7.4 The closure in the Poisson commutator table (1.7.5)
among the set of axisymmetric phase space functions (X1, Xo, X3) is
possible, because these functions are all quadratic monomaials in the
canonical variables. That 1s, the canonical Poisson bracket preserves
the class of quadratic monomials in phase space.

Summary 1.7.5 The 2 x 2 traceless matrices mi, mo and ms in
equation (1.6.7) provide a matriz commutator representation of the
Poisson bracket relations in equation (1.7.5) for the quadratic mono-
mials in phase space, X1, Xo and X3, from which the matrices my,
mo and ms were derived. Likewise, the 2 X 2 symplectic matrices
Mi(71), Ms(72) and Ms(73) provide a matriz representation of the
transformations of the phase space vector (q,p)’. These transfor-

mations are generated by integrating the characteristic equations of
the Hamiltonian vector fields {-, X1}, {-, Xa} and {-, X3}.





